Adenoviral vectors
Gene therapy is a promising tool for treatment of the human diseases that cannot be cured by rational therapies, and its primary success depends on suitable vectors to deliver therapeutic genes. Adenoviruses (Ads) are among the most commonly used vectors for gene therapy, second only to retroviruses. During the last decade, remarkable progress has been made in the development of Ad vectors and in the understanding of the toxicity related to the Ad vector system. Ad vector has certain advantages such as high transduction efficiency for different quiescent and dividing cell types and high levels of short-term expression to provide therapeutic benefits. However, researchers are facing the challenges associated with tissue-specific targeting of vectors and the vector-mediated immunogenicity. This review mainly focuses on the studies that have employed methods to improve Ad vectors and reduce viral toxicity for different applications. These methods include minimization or elimination of viral genes, retargeting of vector to the tissue of interest, and generation of immunocompromised recombinant vectors that lead to safer use of Ad vector systems that improve persistence of transgene expression. Moreover, the therapeutic applications of Ad vectors for liver-targeted gene therapy, suicide gene therapy, delivery of small interfering RNA, and production of recombinant vaccine under regulated conditions used in clinical trials are discussed.