A Chemodosimeter for the Ratiometric Detection of Hydrazine Based on Return of ESIPT and Its Application in Live-Cell Imaging
A probe based on 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been synthesized and used for the ratiometric detection of hydrazine. The probe is designed in such a way that the excited state intramolecular proton transfer (ESIPT) of the HBT moiety gets blocked. The chemodosimetric approach of hydrazine to the probe results in the recovery of the ESIPT by removal of a free HBT moiety through subsequent substitution, cyclization, and elimination processes. The probe is successfully demonstrated to enable the detection of hydrazine in live cells.