In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films
Two nanocrystalline Ni thin films, one prepared via DC Magnetron Sputtering and the other prepared via Pulsed Laser Deposition, were strained in-situ in the Transmission Electron Microscope. Although the grain sizes were similar, the two films behaved quite differently in tension. The sputtered material was found to behave in a brittle manner, with failure occurring via rapid coalescence of intergranular cracks. Conversely, the laser deposited film behaved in a ductile manner, with failure occurring by slow ductile crack growth. The difference in failure mechanism was attributed to the presence of grain boundary porosity in the sputtered thin film. Both films exhibited pervasive dislocation motion before failure, and showed no conclusive evidence of a change in deformation mode.