Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration
During field application, the microbial fuel cell (MFC) will be exposed to variations in operating parameters. Hence, the performance of MFC, exposed to variation in temperature, pH, external resistance and influent chemical oxygen demand (COD), was investigated in the terms of coulombic efficiency (CE) and COD removal efficiency, while treating a synthetic wastewater. The performance was analyzed under two temperature ranges such as 20–35 °C and 8–22 °C. Operation under higher temperature range favored higher COD removal efficiency of 90% and lower current (0.7 mA) and CE (1.5%). At lower temperature range, although the COD removal efficiency of MFC decreased (59%), it gave higher current (1.4 mA) and CE (5%). The highest current was generated at pH of 6.5 in the anodic chamber with CE of 4%. Higher pH difference between anodic and cathodic electrolyte favored higher current and voltage. Within the range of COD tested (100–600 mg/l), linear correlation was observed between the current and substrate removed.